301 research outputs found

    Design of APSK Constellations for Coherent Optical Channels with Nonlinear Phase Noise

    Get PDF
    We study the design of amplitude phase-shift keying (APSK) constellations for a coherent fiber-optical communication system where nonlinear phase noise (NLPN) is the main system impairment. APSK constellations can be regarded as a union of phase-shift keying (PSK) signal sets with different amplitude levels. A practical two-stage (TS) detection scheme is analyzed, which performs close to optimal detection for high enough input power. We optimize APSK constellations with 4, 8, and 16 points in terms of symbol error probability (SEP) under TS detection for several combinations of input power and fiber length. Our results show that APSK is a promising modulation format in order to cope with NLPN. As an example, for 16 points, performance gains of 3.2 dB can be achieved at a SEP of 10^-2 compared to 16-QAM by choosing an optimized APSK constellation. We also demonstrate that in the presence of severe nonlinear distortions, it may become beneficial to sacrifice a constellation point or an entire constellation ring to reduce the average SEP. Finally, we discuss the problem of selecting a good binary labeling for the found constellations. For the class of rectangular APSK a labeling design method is proposed, resulting in near-optimal bit error probability.Comment: Submitted to IEEE Transactions on Communication

    Improving soft FEC performance for higher-order modulations via optimized bit channel mappings

    Get PDF
    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.Comment: This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-12-1454

    On Optimal TCM Encoders

    Get PDF
    An asymptotically optimal trellis-coded modulation (TCM) encoder requires the joint design of the encoder and the binary labeling of the constellation. Since analytical approaches are unknown, the only available solution is to perform an exhaustive search over the encoder and the labeling. For large constellation sizes and/or many encoder states, however, an exhaustive search is unfeasible. Traditional TCM designs overcome this problem by using a labeling that follows the set-partitioning principle and by performing an exhaustive search over the encoders. In this paper we study binary labelings for TCM and show how they can be grouped into classes, which considerably reduces the search space in a joint design. For 8-ary constellations, the number of different binary labelings that must be tested is reduced from 8!=40320 to 240. For the particular case of an 8-ary pulse amplitude modulation constellation, this number is further reduced to 120 and for 8-ary phase shift keying to only 30. An algorithm to generate one labeling in each class is also introduced. Asymptotically optimal TCM encoders are tabulated which are up to 0.3 dB better than the previously best known encoders

    Optimized Bit Mappings for Spatially Coupled LDPC Codes over Parallel Binary Erasure Channels

    Full text link
    In many practical communication systems, one binary encoder/decoder pair is used to communicate over a set of parallel channels. Examples of this setup include multi-carrier transmission, rate-compatible puncturing of turbo-like codes, and bit-interleaved coded modulation (BICM). A bit mapper is commonly employed to determine how the coded bits are allocated to the channels. In this paper, we study spatially coupled low-density parity check codes over parallel channels and optimize the bit mapper using BICM as the driving example. For simplicity, the parallel bit channels that arise in BICM are replaced by independent binary erasure channels (BECs). For two parallel BECs modeled according to a 4-PAM constellation labeled by the binary reflected Gray code, the optimization results show that the decoding threshold can be improved over a uniform random bit mapper, or, alternatively, the spatial chain length of the code can be reduced for a given gap to capacity. It is also shown that for rate-loss free, circular (tail-biting) ensembles, a decoding wave effect can be initiated using only an optimized bit mapper

    On the Information Loss of the Max-Log Approximation in BICM Systems

    Full text link
    We present a comprehensive study of the information rate loss of the max-log approximation for MM-ary pulse-amplitude modulation (PAM) in a bit-interleaved coded modulation (BICM) system. It is widely assumed that the calculation of L-values using the max-log approximation leads to an information loss. We prove that this assumption is correct for all MM-PAM constellations and labelings with the exception of a symmetric 4-PAM constellation labeled with a Gray code. We also show that for max-log L-values, the BICM generalized mutual information (GMI), which is an achievable rate for a standard BICM decoder, is too pessimistic. In particular, it is proved that the so-called "harmonized" GMI, which can be seen as the sum of bit-level GMIs, is achievable without any modifications to the decoder. We then study how bit-level channel symmetrization and mixing affect the mutual information (MI) and the GMI for max-log L-values. Our results show that these operations, which are often used when analyzing BICM systems, preserve the GMI. However, this is not necessarily the case when the MI is considered. Necessary and sufficient conditions under which these operations preserve the MI are provided

    A Low-Complexity Detector for Memoryless Polarization-Multiplexed Fiber-Optical Channels

    Get PDF
    A low-complexity detector is introduced for polarization-multiplexed M-ary phase shift keying modulation in a fiber-optical channel impaired by nonlinear phase noise, generalizing a previous result by Lau and Kahn for single-polarization signals. The proposed detector uses phase compensation based on both received signal amplitudes in conjunction with simple straight-line rather than four-dimensional maximum-likelihood decision boundaries.Comment: accepted for publication in IEEE Comm. Let

    Spatially-Coupled Codes for Optical Communications: State-of-the-Art and Open Problems

    Get PDF
    We give a brief survey of a particularly interesting class of codes, called spatially-coupled codes, which are strong candidates for future optical communication systems. We discuss some recent research on this class of codes in the area of optical communications, and summarize some open research problems

    Constellation Optimization for Coherent Optical Channels Distorted by Nonlinear Phase Noise

    Get PDF
    We consider the design of amplitude phase-shift keying (APSK) constellations, targeting their application to coherent fiber-optical communications. Phase compensation is used at the receiver to combat nonlinear phase noise caused by the Kerr-effect. We derive the probability density function of the post- compensated observation for multilevel constellations. Optimal APSK constellations in terms of symbol error probability (SEP) are found assuming a two-stage detector. Performance gains of 3.2 dB can be achieved compared to 16-QAM at a SEP of 10^−2. We optimize the number of rings, the number of points per ring, as well as the radius distribution of the constellation. For low to moderate nonlinearities, radius optimization only yields minor improvements over an equidistant spacing of rings. In the highly nonlinear regime, however, a smaller SEP can be achieved by “sacrificing” the outer ring of the constellation, in favor of achieving good SEP in the remaining rings

    Terminated and Tailbiting Spatially-Coupled Codes with Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems

    Get PDF
    We study the design of spectrally efficient fiber-optical communication systems based on different spatially coupled (SC) forward error correction (FEC) schemes. In particular, we optimize the allocation of the coded bits from the FEC encoder to the modulation bits of the signal constellation. Two SC code classes are considered. The codes in the first class are protograph-based low-density parity-check (LDPC) codes which are decoded using iterative soft-decision decoding. The codes in the second class are generalized LDPC codes which are decoded using iterative hard-decision decoding. For both code classes, the bit allocation is optimized for the terminated and tailbiting SC cases based on a density evolution analysis. An optimized bit allocation can significantly improve the performance of tailbiting SC codes codes over the baseline sequential allocation, up to the point where they have a comparable gap to capacity as their terminated counterparts, at a lower FEC overhead. For the considered terminated SC codes, the optimization only results in marginal performance improvements, suggesting that in this case a sequential allocation is close to optimal.Comment: This paper has been accepted for publication in the IEEE/OSA Journal of Lightwave Technolog

    Ultra-Wideband Nonlinearity Compensation Performance in the Presence of PMD

    Get PDF
    We investigate the performance of multi-channel digital backpropagation for 1 THz bandwidth optical fibre transmission in the presence of polarisation-mode dispersion. We show that the average SNR performance rapidly saturates as a function of the compensation bandwidth
    • 

    corecore